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Abstract. For a harmonic oscillator with time-dependent (positive) mass and frequency, a unitary
operator is shown to transform the quantum states of the system to those of a harmonic oscillator
system of unit mass and time-dependent frequency, as well as operators. For a driven harmonic
oscillator, a unitary transformation which relates the driven system and a system of the same mass
and frequency without a driving force is given, as a generalization of previous results, in terms
of the solution of classical equation of motion of the driven system. Thus transformations give a
simple way of finding exact wavefunctions of a driven harmonic oscillator system, provided the
quantum states of the corresponding system of unit mass are given.

1. Introduction

The harmonic oscillators with time-dependent mass and frequency have long been of interest
and give examples of exactly solvable time-dependent systems. For the oscillator of constant
mass and time-dependent frequency, Lewis [1, 2] has shown that there exists a quantum
mechanically invariant operator, unaware of Ermakov’s results [3]. This so-called Ermakov–
Lewis invariant operator can be used to find exact quantum states. This method has then been
generalized to include time-dependent mass [4, 5], driving force [6], and to a general quadratic
system whose Hamiltonian has all terms of position and momentum quadratic or less than that
[7, 8].

Another systematic method to find exact quantum states of the systems is to use the
Lagrangian formulation of Feynman and Hibbs [9] who have shown that the position-dependent
part of the kernel (propagator) is determined from the classical action. This observation by
Feynman and Hibbs gives a good explanation of the fact that the wavefunctions of the quantum
states are described in terms of solutions of classical equation of motion. In [10], this method
has been developed to give the exact kernel. The wavefunctions of general quadratic systems
are then found by factorizing the kernel.

With these generalizations from Lewis’s results, one important question arises: do the
generalizations give quite new systems? This question has long been studied through the
canonical transformation in classical mechanics [11, 12]. In a quantum treatment [13, 14], in
addition to the recognition of the relation between a driven and an undriven system [15, 16],
a part of the answer to this question has been given by Mostafazadeh [14]. He found a
unitary operator which transforms the Hamiltonian of the oscillator of time-dependent mass
and frequency to that of constant mass. So, one of his conclusions was confirmation of the
old (classical) result, in quantum treatment, that the Hamiltonian of the Caldirola–Kanai (CK)
system [17, 18] can be obtained from that of a simple harmonic oscillator [19].
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The purpose of this paper is to show that the generalizations [4–8, 10] of Lewis’s results can
be done through unitary transformations not only at the operator level but also in representation
theory. For this, we need two unitary transformations. One of the transformations is to relate
the driven harmonic oscillator system to that of the same parameters without a driving force.
The operator of this transformation will be given in terms of the solution of the classical
equation of motion of the driven system, as a generalization of previous results [15, 16, 19]. The
other transformation is to change the mass and frequency of the system. The mass–frequency
relation given by Mostafazadeh [14] will also be obtained by comparing the classical equations
of motion of the two systems. If we choose proper parameters which will be found explicitly,
the transformation changes the system of time-dependent (positive) mass and frequency to that
of unit mass.

By applying the operators to the quantum states of the system of unit mass, it will be
shown that the wavefunctions of the driven harmonic oscillator can be obtained from those of
the corresponding undriven system of unit mass. Therefore, this transformation method gives
a simple way of finding exact quantum states of a driven harmonic oscillator system [6] or a
general quadratic system [7, 8, 10], provided quantum states of the corresponding system of
unit mass are given. As explicit examples, we consider two models which are equivalent to
simple harmonic oscillators. One of them is the CK system [17, 18] and the wavefunctions of
this system will be evaluated from those of simple harmonic oscillators.

2. The unitary transformations for harmonic oscillator systems without a driving force

We start with the transformation for the time-dependent Hamiltonian

H(p, x, t) = p2

2M(t)
+ 1

2M(t)w
2(t) x2 (1)

whereM(t) andw(t) are the time-dependent (positive) mass and frequency, respectively. Then
the wavefunctionψ(x, t) of a quantum eigenstate should satisfy the Schrödinger equation

Oψ(x, t) = 0 with O ≡ −ih̄
∂

∂t
+H

(
h̄

i

∂

∂x
, x, t

)
. (2)

Since we will consider the time-dependent unitary transformation, it is necessary to consider
the transformation of the operatorO instead ofH [13, 14, 20]. With the unitary operator,Uc,
defined as

Uc = eiαx2/h̄eiβ(xp+px)/4h̄ (3)

one may find the relation

UcOU
†
c = −ih̄

∂

∂t
+

p2

2Meβ
+ (xp + px)

[
− β̇

4
− α

Meβ

]
+
x2

2

[
Mw2eβ + 2αβ̇ − 2α̇ +

4α2

Meβ

]
(4)

where the dots over variables denote the differentiation with respect to time. Equation (4)
implies that the unitary transformation gives rise to a new system described by the Hamiltonian

Hnew = p2

2Meβ
+ (xp + px)

[
− β̇

4
− α

Meβ

]
+
x2

2

[
Mw2eβ + 2αβ̇ − 2α̇ +

4α2

Meβ

]
. (5)

As is well known, the term proportional to(xp+px) in Hamiltonian can be generated by acting
a unitary transformation in the Hamiltonian formulation [21], or by adding a term proportional
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to dx2/dt to the Lagrangian [10]. Since the term proportional to(xp +px) can be interpreted
as a result of simple unitary transformation, we will takeα as

α = − 1
4Mβ̇eβ. (6)

With this relation,Hnew is written as

Hnew = p2

2Meβ
+Meβ

[
w2 +

1

2

Ṁ

M
β̇ +

β̈

2
+
β̇2

4

]
x2

2
. (7)

Hnew in equation (7) shows [14, 20] that a unitary transformation can be used to find a new
harmonic oscillator system which has a different mass and frequency from the original system
of equation (1). Among these systems, we can find a system of unit mass by taking

β = − lnM(t) (8)

which is described by the Hamiltonian

H0 = p2

2
+

1

2

(
w2 +

1

4

(
Ṁ

M

)2

− 1

2

M̈

M

)
x2 = p2

2
+

1

2

(
w2 − 1√

M

d2
√
M

dt2

)
x2. (9)

That is, the mass of the system is 1, while the new frequency,w0, is given by [14]

w2
0(t) = w2 − 1√

M

d2
√
M

dt2
. (10)

The unitary operator for the transformation from the Hamiltonian in equation (1) toH0 is now
given as

U0 = exp

(
i

4h̄

Ṁ

M
x2

)
exp

(
− i lnM

4h̄
(xp + px)

)
. (11)

In the above equations, the unit mass which has not been written explicitly should be taken
into account to find the correct physical dimensions, which will also be true from now on.

One may find that the unitary operator in equation (11) [14] which does not depend on
the solutions of the classical equation of motion is different from that in [13].

The system described by Hamiltonian in equation (9) is one of those considered by
Lewis [1]. With non-negative integern, then-order Hermite polynomialHn and two linearly
independent real solutionsu0(t), v0(t) of the classical equation of motion

¨̄x0 +w2
0(t) x̄0 = 0 (12)

the wavefunctions of the quantum eigenstates are given as [1, 4, 5, 10]

ψ0
n(x, t) =

1√
2nn!

(
�0

πh̄

)1/4 1√
ρ0(t)

[
u0(t)− iv0(t)

ρ0(t)

]n+1/2

exp

[
x2

2h̄

(
− �0

ρ2
0(t)

+ i
ρ̇0(t)

ρ0(t)

)]
×Hn

(√
�0

h̄

x

ρ0(t)

)
. (13)

In equation (13),�0 andρ0(t) are defined as

�0 = [v̇0(t) u0(t)− u̇0(t) v0(t)] ρ0(t) =
√
u2

0(t) + v2
0(t). (14)

�0 which depends on the choice of classical solutions is constant along the time evolution.
Even though the corresponding Schrödinger equation is formally satisfied for any non-zero
�0, we will only consider the cases of positive�0 for applications.
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For the simple harmonic oscillator of unit mass and positive constant frequencyws , one
may take the classical solutions asu0 = A coswst, andv = B sinwst , with positive constants
A andB. The wavefunctions in equation (13) then becomes

ψSHO
n (ws; x, t) = 1√

2nn!

(
Cws

πh̄

)1/4 1√
ρ̃s(t)

[
C coswst − i sinwst

ρ̃s(t)

]n+1/2

× exp

(
x2

2h̄

[
− Cws
ρ̃2
s (t)

+ i
˙̃ρs(t)

ρ̃s(t)

])
Hn

(√
Cws

h̄

x

ρ̃s(t)

)
(15)

where

ρ̃s(w0) =
√

1 + (C2 − 1) cos2w0t and C = A

B
. (16)

With the choice ofC = 1, ψSHO
n (ws, x, t) reduces to the usual stationary wavefunction of

the unit mass simple harmonic oscillator; however, forC 6= 1, the wavefunctions describe the
quantum eigenstates of pulsating probability distribution.

The unitary transformation changes quantum states as well as operators. To show this fact
explicitly, we define a set of two linearly independent functions{u, v} as

u(t) = u0(t)√
M

v(t) = v0(t)√
M
. (17)

One then easily finds that{u, v} satisfies the differential equation

d

dt
(M ˙̄x) +M(t)w2(t) x̄ = 0 or ¨̄x +

Ṁ

M
˙̄x +w2(t) x̄ = 0 (18)

which is the classical equation of motion for the system described by the Hamiltonian in
equation (1). Furthermore, by substitutingx̄ with x̄0/

√
M in equation (18) and comparing

equations (12) and (18), one mayreproducethe mass–frequency relation (10). We also define
�, ρ(t) as

� = M(t)[v̇(t) u(t)− u̇(t) v(t)] ρ(t) =
√
u2(t) + v2(t). (19)

� is then constant along time. Making use of the fact that

e(a(t) x(∂/∂x))f (x) = f (ea(t)x) (20)

through the unitary transformation, one may find the wavefunction for the system of the
Hamiltonian in equation (1):

ψn(x, t) = U†
0ψ

0
n (21)

= 1√
2nn!

(
�

πh̄

)1/4 1√
ρ(t)

[
u(t)− iv(t)

ρ(t)

]n+1/2

exp

[
x2

2h̄

(
− �

ρ2(t)
+ iM(t)

ρ̇(t)

ρ(t)

)]
×Hn

(√
�

h̄

x

ρ(t)

)
(22)

which agrees with the known result [4, 5, 10].

3. Examples

We consider two systems which are unitarily equivalent to the simple harmonic oscillator, as
examples. The first one is the CK system [17, 18] described by the Hamiltonian

HCK(p, x, t) = p2

2meγ t
+ 1

2meγ tw2
1x

2 (23)
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with constantm, γ andw1. Equation (10) shows that the CK system is unitarily equivalent to
the simple harmonic oscillator of unit mass and constant frequencywck, wherewck is given
by [19]

w2
ck = w2

1 − 1
4γ

2. (24)

For the case of positive realwck, the wavefunctions are easily found from those in equation (15)
by applying the relation in (21),

ψCK
n = exp

(
i

4h̄
(γ t + lnm)(xp + px)

)
exp

(
− iγ

4h̄
x2

)
ψSHO
n (wck; x, t)

= (meγ t )1/4 exp

(
γ t + lnm

2
x
∂

∂x

)
exp

(
− iγ

4h̄
x2

)
ψSHO
n (wck; x, t)

= 1√
2nn!

(
meγ tCwck

πh̄

)1/4 1√
ρ̃ck

[
C coswckt − i sinwckt

ρ̃ck

]n+1/2

× exp

[
meγ tx2

2h̄

(
−Cwck
ρ̃2
ck

+ i

( ˙̃ρck
ρ̃ck
− γ

2

))]
Hn

(√
meγ tCwck

h̄

x

ρ̃ck

)
(25)

where

ρ̃ck = ρ̃s(wck). (26)

By adjustingC, the wavefunctions in equation (25) can be shown to give those in [22–25]. By
taking two linearly independent solution of the classical equation of motion:

¨̄x + γ ˙̄x +w2(t)x̄ = 0

of the CK system asu = Ae−γ t/2 coswckt andv = Be−γ t/2 sinwckt , one can also obtain the
wavefunctions in equation (25) from equation (22).

As another example, we consider the system of the damped pulsating oscillator considered
in [6, 26], where the time-dependent massMLo is given asMLo = m0 exp[2(γ t + µ sinνt)]
with constantm0, γ, µ and ν. The frequencyw(t) of the model is defined asw2 =
w2
Lo + (1/

√
MLo)(d2

√
MLo/dt2), with constantwLo. Though this model looks complicated,

equation (10) implies that this system is unitarily equivalent to the simple harmonic oscillator
of unit mass and constant frequencywLo. The wavefunctions can also be obtained from those
in equation (15) as

ψLo
n =

1√
2nn!

(
MLoCwLo

πh̄

)1/4 1√
ρ̃Lo

[
C coswLot − i sinwLot

ρ̃Lo

]n+1/2

× exp

[
MLo

2h̄
x2

(
−CwLo
ρ̃2
Lo

+ i

( ˙̃ρLo
ρ̃Lo
− 1

2

ṀLo

MLo

))]
Hn

(√
MLoCwLo

h̄

x

ρ̃Lo

)
(27)

where

ρ̃ck = ρ̃s(wLo). (28)

4. The transformations for driven oscillator systems

The driven harmonic oscillator is described by the Hamiltonian

HF = p2

2M(t)
+ 1

2M(t)w
2(t) x2 − x F(t). (29)
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To find the unitary transformation, we define thexp as a particular solution of the classical
equation of motion:

d

dt
(Mẋp) +M(t)w2(t) xp = F(t). (30)

We also introduce a functionδ(t) defined as

δ̇ = 1
2Mw

2x2
p − 1

2Mẋ
2
p. (31)

By defining an operatorOF as

OF = −ih̄
∂

∂t
+HF (32)

making use of the equations (30) and (31), one can find the relation

UFOU
†
F = OF (33)

whereUF is given as

UF = exp

[
i

h̄
(Mẋpx + δ(t))

]
exp

(
− i

h̄
xpp

)
. (34)

The wavefunction for the system of the Hamiltonian in equation (29) can thus be evaluated
through the unitary transformation as

ψF
n = UFψn (35)

= UFU†
0ψ

0
n (36)

= 1√
2nn!

(
�

πh̄

)1/4 1√
ρ(t)

[
u(t)− iv(t)

ρ(t)

]n+1/2

exp

[
i

h̄
(Mẋpx + δ(t))

]
× exp

[
(x − xp)2

2h̄

(
− �

ρ2(t)
+ iM(t)

ρ̇(t)

ρ(t)

)]
Hn

(√
�

h̄

x − xp
ρ(t)

)
. (37)

One can explicitly check thatψF
n satisfy the Schr̈odinger equation

OFψ
F
n = 0 or ih̄

∂ψF
n

∂t
= − h̄2

2M

∂2

∂x2
ψF
n +

Mw2

2
x2ψF

n − x F(t) ψF
n . (38)

Through a different approach, relation (35) has long been recognized as in [15, 16] for
special cases.

In [10] the wavefunctions for the driven harmonic oscillator are found by factorizing the
kernel. Ifδ is given as

δ = −M
2

v̇

v
x2
p −

1

2

∫ t

t0

M(z)

(
xp(z)

v̇

v
− ẋp(z)

)2

dz (39)

with an arbitrary constantt0, the wavefunctions in equation (37) reduce to those in [10]. And
one may easily check that theδ(t) in equation (39) satisfies the relation (31). The defining
relation (31), however, suggests a simpler formδ(t) as

δ(t) =
∫ t

t0

[
1
2M(z)w

2(z) x2
p(z)− 1

2M(z) ẋ
2
p(z)

]
dz (40)

which can be shown equal to that in equation (39), up to a constant, by making use of the
equation of motion in (18).

For a given particular solutionxp(t), new solutions can be obtained by adding linear
combinations of homogeneous solutions. For instance, a new solutionx ′p(t) can be given as
xp(t) + Cu(t). Theδ(t) depend on the choice of the classical solution, and the difference of
δ evaluated withx ′p(t) from that withxp(t) is written as−CMu̇(xp + 1

2Cu) up to a additive
constant.
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5. Summary and discussions

In summary, we have found the unitary relations between the systems of time-dependent
harmonic oscillators. The first relation is between the systems of time-dependent mass and
of unit mass. The second relation is between those of the driven oscillator and the undriven
oscillator. Provided the results in equation (13) are given, these relations give a simple method
of finding the exact quantum states for a driven harmonic oscillator system [6] or a general
quadratic system [10], as shown explicitly with examples. However, a point that should be
mentioned is that the unitary relation method cannot give the results in equation (13).

The operator for the first relation is unique up to trivial phase [14], but the other operator
which depends on the classical solution is not unique.

Since the operator of the second transformation is an exponential of a linear combination
of x andp, the transformation does not change the uncertainties ofx andp: to be precise, with
the quantum states of|n;F 〉, |n〉 defined asψF

n = 〈x|n;F 〉, ψn = 〈x|n〉, from equation (35)
one can easily prove the relations

〈n;F |(x − 〈n;F |x|n;F 〉)2|n;F 〉 = 〈n|(x − 〈n|x|n〉)2|n〉 (41)

〈n;F |(p − 〈n;F |p|n;F 〉)2|n;F 〉 = 〈n|(p − 〈n|p|n〉)2|n〉. (42)

As a final remark, we add a speculation that there might be some relations between a
harmonic oscillator system of unit mass time-dependent frequency, and a simple harmonic
oscillator. Independently from the time-dependent Hamiltonian system, Gaussian pure states
are constructed in [27, 28] in the study of coherent states. Then = 0 wavefunctions of all
time-dependent harmonic oscillator system belong to those of Gaussian pure states [10]. Our
speculation is from the suggestion that the annihilation operator of any Gaussian pure state
may be obtained from the operator which annihilates the ground state of a simple harmonic
oscillator [28].
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